Volume 4, Issue 1 (March 2022)                   IEEPJ 2022, 4(1): 54-62 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kazemi saleh Z, Mokhtari S, Gharibzadeh S, Bakouie F. (2022). The Relationship Between Sequential Implicit Learning and Visuospatial Working Memory Capacity: A Developmental Study. IEEPJ. 4(1), 54-62. doi:10.52547/ieepj.4.1.54
URL: http://ieepj.hormozgan.ac.ir/article-1-120-en.html
1- Institute for Cognitive and Brain Sciences, Shahid Beheshti University
2- Institute for Cognitive and Brain Sciences, Shahid Beheshti University , fatemeh.bakouie@gmail.com
Abstract:   (1897 Views)
The main aim of this study was to examine the relation of the sequential implicit learning and visuospatial working memory capacity in childhood. The statistical population for this study were all pre-elementary and elementary female students who are studying at schools of Tehran in 2018 – 2019 academic year. The sample of this study consisted of 27 girls aged 6 to 7.5 and 25 girls aged 9 to 10.5 recruited based on availability sampling method. The participants completed the Corsi span task and a modified version of the Serial Reaction Time (SRT) task in a single session. Data were analyzed using independent sample t-test and the Pearson-r. The results showed that although younger children had a lower visuospatial working memory capacity in comparison with the elder children, there is no significant relationship between the visuospatial working memory capacity and SIL. This means that implicit learning of the sequences is not influenced by the differences of the visuospatial working memory capacity.
Full-Text [PDF 718 kb]   (434 Downloads)    
Type of Study: Original | Subject: Educational Psychology
Received: 2019/12/23 | Accepted: 2021/06/8 | Published: 2022/03/1

References
1. Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. [DOI:10.1126/science.1736359]
2. Berch, D. B., Krikorian, R., & Huha, E. M. (1998). The Corsi block-tapping task: Methodological and theoretical considerations. Brain and Cognition, 38(3), 317-338. [DOI:10.1006/brcg.1998.1039]
3. Berry, E. D., Allen, R. J., Mon‐Williams, M., & Waterman, A. H. (2019). Cognitive offloading: structuring the environment to improve children's working memory task performance. Cognitive Science, 43(8). e12770. [DOI:10.1111/cogs.12770]
4. Bo, J., & Lee, C. M. (2013). Motor skill learning in children with developmental coordination disorder. Research in Developmental Disabilities, 34(6), 2047-2055. [DOI:10.1016/j.ridd.2013.03.012]
5. Bo, J., Jennett, S. & Seidler, R.D. (2011). Working memory capacity correlates with implicit serial reaction time task performance. Experimental Brain Research, 214(1), 73-81. [DOI:10.1007/s00221-011-2807-8]
6. Brown, L. A. (2016). Spatial-sequential working memory in younger and older adults: Age predicts backward recall performance within both age groups. Frontiers in Psychology, 4, 7: 1514. [DOI:10.3389/fpsyg.2016.01514]
7. Buttelmann, F., Könen, T., Hadley, L. V., Meaney, J. A., Auyeung, B., Morey, Karbach, J. (2020). Age-related differentiation in verbal and visuospatial working memory processing in childhood. Psychological Research, 84, 2354-2360. [DOI:10.1007/s00426-019-01219-w]
8. Cherry, K. E., & Stadler, M. E. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychology and Aging, 10(3), 379-394. [DOI:10.1037/0882-7974.10.3.379]
9. Cleeremans, A., Destrebecqz, A. & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10),406-416. [DOI:10.1016/S1364-6613(98)01232-7]
10. Curran, T. (1997). Effects of aging on implicit sequence learning: Accounting for sequence structure and explicit knowledge. Psychological Research, 60(1), 24-41. [DOI:10.1007/BF00419678]
11. Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4),450-466. [DOI:10.1016/S0022-5371(80)90312-6]
12. Feldman, J., Kerr, B., & Streissguth, A. P. (1995). Correlational analyses of procedural and declarative learning performance. Intelligence, 20(1), 87-114. [DOI:10.1016/0160-2896(95)90007-1]
13. Foster, J.L., Shipstead, Z., Harrison, T.L., Hicks, K.L., Redick, T.S., & Engle, R.W. (2015). Shortened complex span tasks can reliably measure working memory capacity. Memory & Cognition, 43(2), 226-236. [DOI:10.3758/s13421-014-0461-7]
14. Frensch, P. A., & Miner, C.S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22(1), 95-110. [DOI:10.3758/BF03202765]
15. Gathercole, S.E., Pickering, S.J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177-190. [DOI:10.1037/0012-1649.40.2.177]
16. Guzman-Munoz, F. J. (2018). The influence of personality and working memory capacity on implicit learning. Quarterly Journal of Experimental Psychology, 71(12), 2603-2614. [DOI:10.1177/1747021817749582]
17. Hannula, D.E., Simons, D.J. & Cohen, N.J. (2005). Imaging implicit perception: promise and pitfalls. Nature Reviews Neuroscience, 6(3), 247-255. [DOI:10.1038/nrn1630]
18. Hitch, G.J., Towse, J.N., & Hutton, U. (2001). What limits children's working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General, 130(2), 184-198. [DOI:10.1037/0096-3445.130.2.184]
19. Hong, Y., Alvarado, R.L., Jog, A., Greve, D.N., & Salat, D.H. (2020). Serial reaction time task performance in older adults with neuropsychologically defined mild cognitive impairment. Journal of Alzheimer's Disease, 74, 491-500. [DOI:10.3233/JAD-191323]
20. Horan, W.P., Green, M.F., Knowlton, B.J., Wynn, J.K., Mintz, J., & Nuechterlein, K.H. (2008). Impaired implicit learning in schizophrenia. Neuropsychology, 22(5), 606-617. [DOI:10.1037/a0012602]
21. Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory: correlated or complicated? Cortex, 49(8), 2001-2006. [DOI:10.1016/j.cortex.2013.02.012]
22. Jiménez, L., & Méndez, C. (1999). Which attention is needed for implicit sequence learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 236-259. [DOI:10.1037/0278-7393.25.1.236]
23. Jiménez, L., & Vázquez, G. A. (2008). Implicit sequence learning in a search task. Quarterly Journal of Experimental Psychology, 61(11),1650-1657. [DOI:10.1080/17470210701695801]
24. Joyce, A. W. (2016). Implicit working memory: implications for assessment and treatment. Applied Neuropsychology: Child, 5(3),223-234. [DOI:10.1080/21622965.2016.1167497]
25. Kalra, P. B., Gabrieli, J. D., & Finn, A. S. (2019). Evidence of stable individual differences in implicit learning. Cognition, 190, pp.199-211. [DOI:10.1016/j.cognition.2019.05.007]
26. Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116(3), 321-340. [DOI:10.1016/j.cognition.2010.05.011]
27. Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27(1), 17-30. [DOI:10.1080/00222895.1995.9941696]
28. Knopman, D., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington's disease: Evidence from the serial reaction time task. Neuropsychologia, 29(3), 245-254. [DOI:10.1016/0028-3932(91)90085-M]
29. Martini, M., Furtner, M.R., & Sachse, P. (2013). Working memory and its relation to deterministic sequence learning. PlOS One, 8(2), pe56166. [DOI:10.1371/journal.pone.0056166]
30. Meissner, S. N., Keitel, A., Sudmeyer, M., & Pollok, B. (2016). Implicit motor sequence learning and working memory performance changes across the adult life span. Frontiers in Aging Neuroscience, 8, No.89. [DOI:10.3389/fnagi.2016.00089]
31. Meulemans, T., Van der Linden, M., & Perruchet, P. (1998). Implicit sequence learning in children. Journal of Experimental Child Psychology, 69(3), 199-221. [DOI:10.1006/jecp.1998.2442]
32. Myers, C., & Conner, M. (1992). Age differences in skill acquisition and transfer in an implicit learning paradigm. Applied Cognitive Psychology, 6(5), 429-442. [DOI:10.1002/acp.2350060507]
33. Reber, A. S. (1992). The cognitive unconscious: An evolutionary perspective. Consciousness and Cognition, 1(2), 93-133. [DOI:10.1016/1053-8100(92)90051-B]
34. Reber, A.S. (1976). Implicit learning of synthetic languages: The role of instructional set. Journal of Experimental Psychology: Human Learning and Memory, 2(1), 88-94. [DOI:10.1037/0278-7393.2.1.88]
35. Riggs, K.J., McTaggart, J., Simpson, A., & Freeman, R.P. (2006). Changes in the capacity of visual working memory in 5-to 10-year-olds. Journal of Experimental Child Psychology, 95(1), 18-26. [DOI:10.1016/j.jecp.2006.03.009]
36. Schwarb, H., & Schumacher, E. H. (2009). Neural evidence of a role for spatial response selection in the learning of spatial sequences. Brain Research, 1247, 114-125. [DOI:10.1016/j.brainres.2008.09.097]
37. Schwartz, B. L., Howard, D. V., Howard Jr, J. H., Hovaguimian, A., & Deutsch, S. I. (2003). Implicit learning of visuospatial sequences in schizophrenia. Neuropsychology, 17(3), 517-533. [DOI:10.1037/0894-4105.17.3.517]
38. Seger, C.A. (1994). Implicit learning. Psychological Bulletin, 115(2), 163-196. [DOI:10.1037/0033-2909.115.2.163]
39. Squire, L.R., & Frambach, M. (1990). Cognitive skill learning in amnesia. Psychobiology, 18(1), 109-117. [DOI:10.3758/BF03327224]
40. Thomas, K. M., & Nelson, C. A. (2001). Serial reaction time learning in preschool and school-age children. Journal of Experimental Child Psychology, 79 (4), 364-387. [DOI:10.1006/jecp.2000.2613]
41. Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. (2009). Development of spatial and verbal working memory capacity in the human brain. Journal of cognitive neuroscience, 21(2), 316-332. [DOI:10.1162/jocn.2008.21028]
42. Turk-Browne, N. B., Scholl, B. J., Johnson, M. K., & Chun, M. M. (2010). Implicit perceptual anticipation triggered by statistical learning. Journal of Neuroscience, 30(33), 11177-11187. [DOI:10.1523/JNEUROSCI.0858-10.2010]
43. Unsworth, N., & Engle, R.W. (2005). Individual differences in working memory capacity and learning: Evidence from the serial reaction time task. Memory & Cognition, 33(2), 213-220. [DOI:10.3758/BF03195310]
44. Urry, K., Burns, N. R., & Baetu, I. (2018). Age‐related differences in sequence learning: Findings from two visuo‐motor sequence learning tasks. British Journal of Psychology, 109(4), 830-849. [DOI:10.1111/bjop.12299]
45. Van der Kleij, S.W., Groen, M.A., Segers, E., & Verhoeven, L. (2019). Sequential implicit learning ability predicts growth in reading skills in typical readers and children with dyslexia. Scientific Studies of Reading, 23(1), 77-88. [DOI:10.1080/10888438.2018.1491582]
46. Weitz, D., O'Shea, G., Zook, N., & Needham, W. (2011). Working memory and sequence learning in the Hebb digits task: Awareness is predicted by individual differences in operation span. The American Journal of Psychology, 124(1), 49-62. [DOI:10.5406/amerjpsyc.124.1.0049]
47. Williams, J. N. (2020). The neuroscience of implicit learning. Language Learning, 70(S2), 255-307. [DOI:10.1111/lang.12405]
48. Zwart, F. S., Vissers, C. T. W., Kessels, R. P., & Maes, J. H. (2018). Implicit learning seems to come naturally for children with autism, but not for children with specific language impairment: Evidence from behavioral and ERP data. Autism Research, 11(7), 1050-1061. [DOI:10.1002/aur.1954]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.